DPP - 2 (Circular Motion)

Video Solution on Website:- https://physicsaholics.com/home/courseDetails/78

Video Solution on YouTube:- https://youtu.be/cFalp6MqBWc

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/80

Q 1. Two bodies A and B are moving with same constant speed v in clockwise direction in a horizontal circle of radius R and are initially diametrically opposite as shown in figure. The particle B now achieves a tangential acceleration a $\mathrm{m} / \mathrm{s}^{2}$. Then :

(a) they collide after time $\sqrt{\frac{\pi R}{\frac{a}{2}}}$
(b) they collide after time $2 \sqrt{\frac{\pi R}{a}}$
(c) relative velocity just before collision is $\sqrt{\pi a R}$
(d) relative velocity just before collision is $\sqrt{2 \pi a R}$

Q 2. A bead of mass m is located on a parabolic wire with its axis vertical and vertex at the origin as shown in figure and whose equation is $x^{2}=4 a y$. The wire frame is fixed in vertical plane and the bead can slide on it without friction. The bead is released from the point $y=4 a$ on the wire frame from rest. The tangential acceleration of the bead when it reaches the position given by $\mathrm{y}=\mathrm{a}$ is :

(a) $\frac{g}{2}$
(b) $\frac{\sqrt{3} g}{2}$
(c) $\frac{g}{\sqrt{2}}$
(d) $\frac{g}{\sqrt{5}}$

Q 3. A heavy particle is projected from a point on the horizontal at an angle 45° with the horizontal with a speed of $20 \mathrm{~m} / \mathrm{s}$. Then the radius of the curvature of its path at the instant of crossing the same horizontal is \qquad .
(a) $10 \sqrt{2}$
(b) $40 \sqrt{2}$
(c) $20 \sqrt{2}$
(d) None of these

Q 4. A particle is fired from a point on the ground with speed u making an angle θ with the horizontal. Then:
(a) the radius of curvature of the projectile at the heighest point is $\frac{u^{2} \cos ^{2} \theta}{g}$
(b) the radius of curvature of the projectile at the highest point is $\frac{u^{2} \sin ^{2} \theta}{g}$
(c) at the point of projection tangential acceleration is $g \sin \theta$
(d) at the point of projection tangential acceleration is $g \cos \theta$

Q 5. An open merry - go - round rotates at an angular velocity. A person stands in it at a distance r from the rotational axis. It is raining and raindrops fall vertically with a velocity v . The person should hold an umbrella to protect himself with axis of umbrella tilted with vertical at angle:
(a) $\tan ^{-1}\left(v_{0} / r \omega\right)$ in the plane perpendicular to \vec{r}
(b) $\tan ^{-1}\left(r \omega / v_{0}\right)$ in the plane perpendicular to \vec{r}
(c) $\tan ^{-1}\left(r \omega / v_{0}\right)$ in the plane through \vec{r}
(d) None

Q 6. For a moving particle if a_{r} is radial acceleration and a_{T} is tangential acceleration, then match the motion of column II with conditions given in column I.

Column I

(A) $a_{r}=0, a_{T} \neq 0$

Column II
(p) Non uniform circular
(B) $a_{r} \neq 0, a_{T}=0$
(C) $a_{r}=0, a_{T}=0$
(D) $a_{r} \neq 0, a_{T} \neq 0$
(q) Uniform circular
(r) accelerated translatory
(s) uniform translatory

Q 7. A particle is projected with a velocity uat an angle θ with the horizontal. Find the radius of the curyature of the parabola traced out by the particle at the point where velocity makes an angle $(\theta / 2)$ with the horizontal.
(a) $\frac{u^{2} \cos ^{2} \theta}{2 g \cos ^{3} \frac{\theta}{2}}$
(b) $\frac{2 u^{2} \cos ^{2} \theta}{g \cos ^{3} \frac{\theta}{2}}$
(c) $\frac{3 u^{2} \cos ^{2} \theta}{2 g \cos ^{3} \frac{\theta}{2}}$
(d) $\frac{u^{2} \cos ^{2} \theta}{g \cos ^{3} \frac{\theta}{2}}$

Comprehension (Q. 8 to Q.10)
A horizontal rod is rotating about a vertical axis passing through its one end with constant angular velocity $1 \mathrm{rad} / \mathrm{sec}$. An insect starts moving on it from axis with constant speed $1 \mathrm{~m} / \mathrm{sec}$ relative to rod.

Q 8. Speed of insect at $\mathrm{t}=1 \mathrm{sec}$ is
(a) $1 \mathrm{~m} / \mathrm{sec}$
(b) $2 \mathrm{~m} / \mathrm{sec}$
(c) $\sqrt{2} \mathrm{~m} / \mathrm{sec}$
(d) $2 \sqrt{2} \mathrm{~m} / \mathrm{sec}$

Q 9. Tangential acceleration of insect at $\mathrm{t}=1 \mathrm{sec}$
(a) $\sqrt{2} \mathrm{~m} / \mathrm{sec}^{2}$
(b) $\frac{1}{\sqrt{2}} \quad \mathrm{~m} / \mathrm{sec}^{2}$
(c) $1 \mathrm{~m} / \mathrm{sec}^{2}$
(d) $2 \mathrm{~m} / \mathrm{sec}^{2}$

Q 10. Direction of radial acceleration of insect at $\mathrm{t}=1$ is
(a) Along rod
(b) perpendicular to rod
(c) At angle 45^{0} with rod
(d) None of these

Q 11. For a particle moving along circular path, the radial acceleration a_{r} is proportional to time t. If a_{t} is the tangential acceleration, then which of the following will be independent of time t ?
(a) at_{t}
(b) $a_{r} a_{t}$
(c) $\frac{a_{t}}{a_{t}}$
(d) $a_{r}\left(a_{t}\right)^{2}$

Q 12. A particle starts travelling on a circle with constant tangential acceleration. The angle between velocity vector and acceleration vector, at the moment when particle completes half the circular track, is
(a) $\tan ^{-1}(2 \pi)$
(b) $\tan ^{-1}(\pi)$
(c) $\tan ^{-1}(3 \pi)$
(d) zero

Q 13. A particle is moving in a circular path. The acceleration and momentum of the particle at a certain moment are $\vec{a}=(4 \hat{\imath}+3 \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}$ and $\vec{p}=(8 \hat{\imath}-6 \hat{\jmath}) \mathrm{kg}-\mathrm{m} / \mathrm{s}$. The motion of the particle is:
(a) uniform circular motion
(b) accelerated circular motion
(c) deaccelerated circular motion
(d) we cannot say anything with \vec{a} and \vec{p} only

Q 14. Column I contain some questions and Column II contains some answers. Match the correct answer of question.

| (A) | Partiele moving on a straight line path
 constant velocity | with | (p) |
| :--- | :--- | :--- | :--- | Magnitude of net force is constant

Answer Key

Q. 1 d	Q. 2 c	Q. 3 b	Q. 4 a, c	Q. 5 b
$\begin{gathered} \text { Q. } 6 \begin{array}{c} \text { A-R, B-Q, C-S, } \\ \text { D.P. } \end{array} \\ \hline \end{gathered}$	Q. 7 d	Q. 8 c	$\text { Q. } 9 \mathrm{~b}$	Q. 10 c
Q. 11 d	Q. 12 a	Q. 13 b		

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI

6 months
No cost EMI
₹28,000

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
x Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

6 months
No cost EMI

Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS.
₹4,200/mo

$$
+10 \% \text { OFF ₹ } 25,200
$$

Written Solution

DPP- 2:Relation between linear and angular quantities, Tangential and Radial acceleration and
Radius of curvature
By Physicsaholics Team

Q1) Two bodies A and B are moving with same constant speed vin clockwise direction in a horizontal circle of radius R and are initially diametrically opposite as shown in figure. The particle B now achieves a tangential acceleration a $\mathrm{m} / \mathrm{s}^{2}$. Then :

$$
\begin{array}{ll}
x_{A}=V t & x_{B}-x_{A}=\pi R \\
x_{B}=V t+\frac{1}{2} a t^{2} \\
\text { fter time } \sqrt{\frac{\pi R}{a}} & \left.\begin{array}{l}
\frac{1}{2} a t^{2}=\pi R \\
t
\end{array}\right) \\
\sqrt{\frac{2 \pi R}{a}} \\
V_{B}=V+a \sqrt{\frac{2 \pi R}{a}} \\
V_{B}=V+\sqrt{\frac{\pi R}{a}}
\end{array}
$$

(b) they collide aftertime $2 \sqrt{\frac{\pi R}{a}}$

(c) relative velocity just before collision is $\sqrt{\pi a R}$
(d) KeTative velocity just before collision is $\sqrt{2 \pi a R}$

Q2) A bead of mass m is located on a parabolic wire with its axis vertical and vertex at the origin as shown in figure and whose equation is $x^{2}=4 a y$. The wire frame is fixed in vertical plane and the bead can slide on it without friction. The bead is released from the point $y=4 a$ on the wire frame from rest. The tangential acceleration of the bead when it reaches the position given by $y=$ a is?

$$
\begin{aligned}
a_{T} & =g \sin \theta \\
& =g \sin 45^{\circ} \\
& =g / \sqrt{3}
\end{aligned}
$$

$$
\tan \theta \Rightarrow \frac{d y}{d x}=\frac{x}{2 a}=\frac{2 a}{2 a}
$$

(a) $\frac{g}{2}$
(b) $\frac{\sqrt{3} g}{2}$

$$
x^{2}=4 a y \Rightarrow
$$

$$
\Rightarrow \frac{2 x}{4 a}=\frac{d y}{d x}
$$

(c) $\frac{9}{\sqrt{2}}$

$$
\begin{aligned}
\tan \theta & =1 \\
\theta & =45
\end{aligned}
$$

(d) $\frac{g}{\sqrt{5}}$

Q3) A heavy particle is projected from a point on the horizontal at an angle 45^{0} with the horizontal with a speed of $20 \mathrm{~m} / \mathrm{s}$. Then the radius of the curvature of its path at the instant of crossing the same horizontal is \qquad

(A) $10 \sqrt{2}$

(D) None of these

Q4) A particle is fired from a point on the ground with speed umaking an angle θ with the horizontal. Then:
(a) the radius of curvatyre of the projectile at the beighest point is $\frac{u^{2} \cos ^{2} \theta}{g a_{T}}=g \sin \theta \frac{\theta}{g} g \cos \theta$
(b) the radius of cusvature of the projectile at the highest point is $u^{2} \sin ^{2} \theta$
(c) at the point of projection tangential acceleration is $g \sin \theta$
(d) at the point of projection tangential acceleration is $g \cos \theta$

Q5) An open merry - go - round rotates at an angular velocity A person stands in it at a distance r from the rotational axis. It is raining and raindrops fall vertically with a velocity v . The person should hold an umbrella to protect himself with axis of umbrella tilted with vertical at angle:

(a) $\tan ^{-1}\left(v_{0} \omega\right)$ in the plane perpendicular to \vec{r} (b) $\tan ^{-1}$ (ra) (vo) in the plane perpendicular to \vec{r}
(c) $\tan ^{-1}\left(r \operatorname{co} / v_{0}\right)$ in the plane through \vec{r}
(d) None

Q6) For a moving particle if a_{r} is radial acceleration and a_{T} is tangential acceleration, then match the motion of column II with conditions given in column I.

Q7) A particle is projected with a velocity u at an angle θ with the horizontal. Find the radius of the curvature of the parabola traced out by the particle at the point where velocity makes an angle $(\theta / 2)$ with the horizontal.
$\operatorname{Sin} u U_{x}=C$ nst. $\Rightarrow V \operatorname{Cos} \theta / 2=u \operatorname{Cos} \theta$

$$
V=\frac{u \cos \theta}{\cos \theta / 2}
$$

(a) $\frac{u^{2} \cos ^{2} \theta}{2 g \cos ^{3} \frac{\theta}{2}}$
(b) $\frac{2 u^{2} \cos ^{2} \theta}{g \cos ^{3} \frac{\theta}{2}}$
(c) $\frac{3 u^{2} \cos ^{2} \theta}{2 g \cos ^{3} \frac{\theta}{2}}$

Comprehension

Q8) A horizontal rod is rotating about a vertical axis passing through its one end with constant angular velocity $1 \mathrm{rad} / \mathrm{sec}$. An insect starts moving on it from axis with
 constant speed $1 \mathrm{~m} / \mathrm{sec}$ relative to rod.
(Q) Speed of insect at $t=1$ sec is
(a) $1 \mathrm{~m} / \mathrm{sec}$

$$
\begin{aligned}
& \text { (b) } 2 \mathrm{~m} / \mathrm{sec} \\
& \text { (e) } \sqrt{2} \mathrm{~m} / \mathrm{sec} \\
& \text { at } t=1, \gamma=8=4 \times 1=1 \mathrm{~m} \\
& \text { Drefority du do rotation }=\omega \gamma=1 \mathrm{~m} / \mathrm{sec}_{\mathrm{ec}}
\end{aligned}
$$

Q9) Tangential acceleration of insect at $\mathrm{t}=1 \mathrm{sec}$

$$
a_{T}=\frac{d V}{d t}
$$

(a) $\sqrt{2} \mathrm{~m} / \sec ^{2}$
(c) $1 \mathrm{~m} / \sec ^{2}$
(b) $\frac{1}{\sqrt{2}} \mathrm{~m} / \sec ^{2}$

(d) $2 \mathrm{~m} / \mathrm{sec}^{2}$

$$
\begin{aligned}
& w r=t \\
& V_{1}=\sqrt{t^{2}+t^{2}}=\sqrt{1+t^{2}}=\left(1+t^{2}\right)^{2} \\
& a_{p}=\frac{d r}{d t}=\frac{1}{2}\left(1+t^{2}\right)^{2} \times 2 / t=\frac{t}{\sqrt{1+t^{2}}}=\frac{1}{\sqrt{2}} .
\end{aligned}
$$

Q10) Direction of radial acceleration of insect at $t=1$ is

(a) Along rod

(b) perpendicular to rod
(c) At angle 45° With rod

Q11) For a particle moving along circular path, the radial acceleration a_{r} is proportional to time t. If a_{t} is the tangential acceleration, then which of the following will be independent of time t ?

$$
\begin{aligned}
& a_{r} \propto t \\
& a_{r}=c t \\
& v^{2}=c r t
\end{aligned}
$$

(a) a_{t}
(b) $a_{r} a_{t}$
(c) $\frac{a_{n}}{a_{5}}$
(d) $a_{r}\left(a_{t}\right)^{2}$

Q12) A particle starts travelling on a circle with constant tangential acceleration. The angle between velocity vector and acceleration vector, at the moment when particle completes half the circular track, is

Q13) A particle is moving in a circular path. The acceleration and momentum of the particle at a certain moment are $\vec{a}=(4 \hat{\imath}+3 \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}$ and $\vec{p}=(8 \hat{\imath}-6 \hat{\jmath}) \mathrm{kg}-\mathrm{m} / \mathrm{s}$. The motion of the particle is:

$$
\begin{aligned}
& \bar{a} \cdot \bar{p}=8 b-48=30 \\
\Rightarrow & \text { angl } b / \omega \text { ard } \bar{p}<90
\end{aligned}
$$

spend up
(a) uniform circular motion 4 (b) accelerated circular motion
(c) deaccelerated circularnotion
(d) we cannot say anything with \vec{a} and \vec{p} only

Q14) Column I contain some questions and Column II contains some answers. Match the correct answer of question.

Column I

(A) Particle moving on a straight line (p) Magnitude of net force is path with constant velocity -2 constant

Column II

(B) Particle moving on a straightline (q) Direction of net force is fixed path with constant acceleration
(C) Particle moving in a circle with (r) Magnitude of net force is

(D) Particle moving along an ellipse (s) Direction of net force changes with constant speed \longrightarrow with time

$$
a_{c}=\frac{V^{2}}{R}
$$

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-
https://physicsaholics.com/home/courseDetails/78
https://youtu.be/cFalp6MqBWc
https://physicsaholics.com/note/notesDetalis/80

Chalo Nikis

